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A detailed description of spectral multigrid methods is provided. This includes the inter- 
polation and coarse-grid operators for both periodic and Dirichlet problems. The spectral 
methods for periodic problems use Fourier series and those for Dirichlet problems are based 
upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. 
Numerical examples and practical advice are included. 

I. INTRODUCTION 

The motivation for applying a pseudospectral discretization to elliptic problems is 
to obtain a highly accurate approximation with a small number of collocation points. 
The major advantage that this sort of discretization often offers over standard finite 
difference or finite element techniques is greatly reduced storage requirements. At the 
NASA Ames Symposium on Multigrid Methods, we proposed a spectra1 multigrid 
approach to solving the discrete equations which arise from applying pseudospectral 
approximations to variable-coefficient self-adjoint elliptic equations [ 11. The focus of 
that preliminary report was on problems with periodic boundary conditions. We 
demonstrated that the number of multigrid iterations necessary to achieve 
convergence was independent of the size of the problem. The tentative results given in 
[ 1 ] for problems with Dirichlet boundary conditions were not so satisfactory because 
the required number of multigrid iterations increased with the number of grid points. 
The purpose of this paper is to fill in some of the details omitted from [ 1 ] because of 
page constraints, to describe an improved version of spectral multigrid for Dirichlet 
problems, and to offer some practical advice for implementation. 

* Supported under NASA Grant NAGI-109. 
t Supported under NASA Contracts NASl-17130 and NASl-17070 while in residence at ICASE, 

NASA Langley Research Center, Hampton, Va. 23665. 

489 
0021-999 l/84 $3.00 

Copyright 0 1984 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



490 ZANG, WONG, AND HUSSAINI 

II. SPECTRAL MULTIGRID ON A SIMPLE MODEL PROBLEM 

The fundamentals of spectral multigrid (SMG) are perhaps easiest to grasp for the 
simple model problem 

d2u --- 
dx2 - f 

on (0, 27r) with periodic boundary conditions. We will examine this trivially solvable 
problem in detail for the benefit of those unfamiliar with either spectral or multigrid 
methods. The standard collocation points are 

,-.=2nj 
J N’ 

j=O, l,..., N- 1. (2) 

Let fj = f(xj) and let uj be the approximation to u(x,). The discrete Fourier coef- 
ficients of uj are 

lip = + Nzl Uje - 2~ijPlN, 
J-0 

p=-;,- ;+ l,...& 1. 

The inverse relationship can be written 

(N/2) - I 

uj = c 
2;, e ‘Pxja 

(4) 
p= -NJ2 

Thus, a sensible approximation to the left-hand side of Eq. (1) at the collocation 
points is 

(N/2)-1 

c 
p2ti,eipxj. 

(5) 
p= -N/2 

The pseudospectral approximation to Eq. (1) may be represented by 

where 

and 

LU=F, (6) 

(7) 
(8) 

L = C-‘DC. (9) 
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The matrix C represents the discrete Fourier transform; its elements are 

cpj = f e -2nipjlN. 

Clearly, 
(c- l)jp = e2dip/N~ (11) 

The diagonal matrix D represents the second derivative in transform space, 

Dpq = ~~6p.q. 

In Eqs. (5), (lo)-(12) the indices p and q have the range indicated in Eq. (3); refer to 
Eq. (2) for the range ofj. 

A Richardson’s iterative scheme [2] for solving Eq. (6) is 

Vt v+ w(F-Lv), (13) 

where V is the current approximation to U and w is a relaxation parameter. The 
eigenfunctions of L are 

with the corresponding eigenvalues 

The ranges ofj and p are the same as above. The index p has a natural interpretation 
as the frequency of the eigenfunction. 

The error at any stage of the iterative process is V- U, it can be resolved into an 
expansion in the eigenvectors of L. Each iteration reduces the pth error component to 
v(J,) times its previous value, where 

u(l) = 1 - WA. (16) 

The optimal choice of w results from minimizing (v(A)1 for 1 E [&, &,,,,I, where 
~min = 1 and A,,,,, = N2/4. (One need not worry about the p = 0 eigenfunction since it 
corresponds to the mean level of the solution, which is at one’s disposal for this 
problem.) The optimal relaxation parameter for this single-grid procedure is 

2 
W 

SC3 = I,,, + Amin ’ 

It produces the spectral radius 

(17) 

1 
P 

mm -Anin 

SG = A,,, + Amin * 
(18) 

581/54/3-9 
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Unfortunately, PSG 1: 1 - 8/N’, which implies that O(N*) iterations are required to 
achieve convergence. 

This slow convergence is the outcome of balancing the damping of the lowest 
frequency eigenfunction with that of the highest frequency one in the minimax 
problem described after Eq. (16). The multigrid approach takes advantage of the fact 
that the low-frequency modes (I pi < N/4) can be represented just as well on coarser 
grids. It balances the middle-frequency eigenfunction (I pI = N/4) with the highest 
frequency one (I p 1 = N/2), and, hence, damps effectively only those modes which 
cannot be resolved on coarser grids. In Eqs. (17) and (IS), &in is replaced with 
Amid = A(N/4). The optimal relaxation parameter in this context is 

(19) 

The multigrid smoothing factor 

1 
P 

max - Lid 

MG = A,,, + Ami, 
(20) 

measures the damping rate of the high-frequency modes. In this example P,, = 0.60, 
independent ofN. The price of this effective damping of the high-frequency errors is 
that the low-frequency errors are hardly damped at all. However, on a grid with N/2 
collocation points, the modes for 1 pi E [N/8, N/4] are now the high-frequency ones. 
They get damped on this grid. Still coarser grids can be used until relaxations are so 
cheap that one can afford to damp all the remaining modes, or even to solve the 
discrete equations exactly. 

The spectral multigrid approach requires the use of a sequence of grids (or levels). 
Denote these levels by the index k, where k = 2,3,..., K. Level k consists of Nk 
collocation points, where Nk = 2 k. Equations (2)-( 12) apply on each level with Nk 
replacing N. Throughout this paper the symbol k will be used solely to denote a 
multigrid level. 

On each level we must define a discrete problem, a relaxation scheme, and inter- 
polation operators. The discrete problems will be denoted by 

LkVk =Fk. (21) 

On the finest level, Lk = L, Fk = F, and Vk = U, the solution to Eq. (6). The relax- 
ation scheme will be confined here to be Richardson iteration 

vk + vk + cok(Fk - Lkvk), C-22) 

where vk is the approximation *to Vk and C.U~ is the relaxation parameter. The inter- 
polation operator Rk represents the fine-to-coarse restriction of residuals from level k 
to level k- 1, 

Fk-’ =Rk(Fk -Lkvk). (23) 
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The interpolation operator Pk represents the prolongation of corrections from level 
k - 1 to level k, 

vk +- vk + Pkvk-l. (24) 

Appropriate choices for the coarse-grid operators Lk and the interpolation operators 
are discussed in the next section. Many choices are possible for the scheduling 
algorithm which controls the transfer between grids. We will return to this issue in 
the section on numerical examples. 

III. INTERPOLATION AND COARSE GRID OPERATORS 

We will focus on the one-dimensional problem 

on either (0,2x) as in the periodic case or on (-1, 1) as in the Dirichlet case. We will 
occasionally refer to equations from [ 11, denoting them by the prefix I, for example, 
Eq. (1.5). 

Fourier Series 

The natural interpolation operators represent trigonometric interpolation. They 
were defined in [I] by Eqs. (1.31) and (1.32). Useful explicit representations of the 
restriction and prolongation operators (with the superscript k suppressed) are 

(26) 

and 

These summations may be performed in closed form to yield 

(27) 

and 

(29) 
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where 

q=;- 1, I = 0 (mod N), 

=sin (T)cot (G) -cos (F), otherwise. 

In analyzing the coarse-grid operator, Eqs. (26) and (27) are more useful than Eqs. 
(28)-(30). Moreover, as noted in [I], the interpolation can be implemented efficiently 
by fast Fourier transforms rather than by using Eqs. (28)-(30) in matrix-vector 
multiplications. By the way, the definition of C given here in Eq. (10) differs slightly 
(by a factor @) from the definition used in [ 11. Note that except for a factor of 2, P 
and R are adjoint. 

The pseudospectral evaluation of the left-hand side of Eq. (25) can be expressed as 

MAM U, (31) 

where 

M = C-‘DC, (32) 

Aj, = a(xj) aj,,, (33) 

and in a slight change of notation the diagonal matrix D which represents the first 
derivative in wavenumber space is given by 

(34) 

The reason for setting D,, = 0 for p = -N/2 is given in [ 11. Equation (3 1) costs only 
O(N In N) operations to evaluate when the fast Fourier transform is used. A simple, 
efficient, and effective choice for the coarse-grid operator Lk- ’ is 

L&-l =Mk-‘A&-lMk-1 
3 

where Ak is the diagonal matrix given by 

Aj: = gk(xj) dj,r, 

(35) 

(36) 

with a”(xj) = a(xj), and for k = 3,4 ,..., K, 

a -k-l =Rk&k 
(37) 

In other words, the variable coefficient to be used on the coarser grid k - 1 is a 
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filtered version of the coefficient on level k. Otherwise, the coarse-grid operators are 
the natural pseudospectral approximations on those levels. 

As has been stressed especially by Nicolaides [3], Hackbusch [4], and Wesseling 
[5], it seems desirable to use 

Lk-’ =RkLkpk 9 (38) 

with Rk the adjoint of Pk. The choice made above in Eqs. (35)-(37) does not satisfy 
Eq. (38), except for special a(x) such as a(x) = 1. Indeed, one can show that the 
coarse-grid operator so produced is equal to the right-hand side of Eq. (38) plus some 
additional terms which are due to aliasing effects. This is a simple, but lengthy 
calculation. Here one should be sure to use Eqs. (26) and (27) as well as 
orthogonality relations such as 

N-l 

C pihUN = N , pro (modN), 
j=O 

= 0, otherwise. 
(39) 

One can achieve a better approximation to the property of Eq. (38), that is, the 
aliasing terms are far fewer, by a rather simple modification of the pseudospectral 
method. This technique is known as the two-thirds rule. It consists of discarding the 
upper third of the frequency spectrum. On a grid with N collocation points Eq. (34) is 
replaced with 

D, = ip, IPI <N/39 

= 0, N/~<IPIGN/~, 
(40) 

and the interpolation operators become 

(41) 

and 

e2ni4(j-21)/N . (42) 

The price of this modification is that one-third of the collocation points are wasted. 
Thus the two-thirds rule version of SMG would have to produce a substantial 
improvement in the convergence rate in order to compensate for its reduced accuracy. 
Although no such examples have yet emerged from our numerical experiments, the 
two-thirds rule option may eventually prove to be of some use. 
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Chebyshev Series 

The cosine transform matrix C and the Chebyshev differentiation matrix D as 
given in Eqs. (1.45) and (1.47) will be left unchanged from [ 11. The analogs to Eqs. 
(26)-(30) are 

and 

where 

Rj,2& ‘g ~;kos (Jg) cos ($) 

Pj,=$ g &kos (q) cos (f), 

Fq = 2, q=OorN, 

= 1, l<q<N-1, 

c’, = 2, q=OorN/2, 

= 1, l<q<N/2-I 

and 

2- - 
Rj, = q (Q,-, + Qzj+r) 

f’j/=& Q-2, + Qj+2/), 
I 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

where 

0, = (N/4) + b, r = 0 (mod N), 

=$++cos ((+-++)T) sin (7) csc ($), otherwise, 

Q, = N/4, r = 0 (mod N), 

1 1 
=----cos (7) ++cos ((f+f) 7) sin(F) csc (;), 

4 4 

otherwise. 

(4% 

(50) 

Equations (43) and (44) represent the “obvious” restriction and interpolation 
operators. Both may be implemented effkiently by fast cosine transforms. Unlike the 
Fourier series case, however, R and P are not adjoint (even aside from a constant 
multiple) unless the boundary conditions happen to be homogeneous Dirichlet. A 
common choice in finite difference multigrid algorithms and a natural one in finite 
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element cases is to force R to be adjoint to P. Our own computational experience 
with Chebyshev SMG leads us to endorse this strategy. For residual transfers, then, 
we recommend 

R,,=& F. c;,-lcos (F) COS ($), 

which reduces to 

Rj, = $, (Qzj-r + Q*j+l)* 
J 

(51) 

(52) 

However, the construction of the filtered-coefficient version of the coarse-grid 
operator via Eqs. (35)-(37) should still be based on the restriction formula in 
Eq. (43). 

IV. AN IMPROVED PRECONDITIONING FOR DIRICHLET PROBLEMS 

Consider the self-adjoint elliptic equation 

(53) 

on (-1,1) X (-1,l) with Dirichlet boundary conditions. The appropriate 
pseudospectral approximation employs Chebyshev polynomials. The collocation 
points (x,, JJ,) satisfy 

Xj = COS(lrj/iV), y[ = cos(al/fv), j,l= 1, 2,...,N- 1. (54) 

Let N = (N - l)* denote the total number of degrees of freedom. The pseudospectral 
approximation leads to a discrete set of equations like Eq. (6). A detailed description 
of the matrix L representing the Chebyshev discretization of Eq. (53) is given in [ 11. 

It is apparent from Eq. (18) that the convergence rate of Richardson’s iteration on 
a single grid is governed by the ratio of the largest-to-smallest eigenvalues of L. This 
ratio will be referred to as the single-grid condition number. The multigrid condition 
number, on the other hand, is the ratio of the largest eigenvalue to the smallest high- 
frequency eigenvalue. It controls the smoothing rate (see Eq. (20)). The estimates 
given in [l] for these eigenvalues are A,.,,,, = O(N4), amid = O(N*), and A,,,,” 21 n*/4. 
The implication is that effective preconditioning is essential for multigrid as well as 
for single-grid iterative schemes. 

Preconditioned Richardson iteration can be expressed as 

V+U+wH-'(I:-Lv), (55) 
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TABLE I 

Extreme Eigenvalues for Preconditioned Chebyshev Operator in Two Dimensions 

4 1.000 1.757 0.929 1.717 1.037 1.781 
8 1.000 2.131 0.582 2.273 1.061 2.877 

16 1 .ooo 2.305 0.224 2.603 1.043 4.24 1 
24 1.000 2.361 0.111 2.737 1.03 1 5.379 

where H is a preconditioning matrix. An obvious choice for H is a finite difference 
approximation H,, to the differential operator in Eq. (52). In more than one 
dimension, these finite difference approximations are themselves costly to invert. An 
attractive alternative is to use instead an approximate LU-decomposition of HFD, that 
is, H is taken as the product of a lower triangular matrix .Y and an upper triangular 
matrix P. In one such type of preconditioning (originally proposed by Buleev [6] and 
Oliphant [7] for finite difference discretizations of Eq. (53)), denoted by HLU, 9 is 
identical to the lower triangular portion of H,, and P is chosen so that the two super 
diagonals of LU agree with those of H,, . In [ 11, a similar decomposition, denoted by 
H RS, was proposed in which the diagonal elements of 9 were altered from those of 
H,, to ensure that the row sums of H,, and HFD are identical. Incomplete LU- 
decompositions have been used by Wesseling and Sonneveld [8] for multigrid 
solutions of finite difference discretizations. 

Both types of preconditioning can be computed by a simple recursion. Let (Xj, y,) 
be an interior point of the grid. Suppose that the finite difference approximation to 
Eq. (53) at this point is given by 

bj,~uj,,-~ + dj.l"j-l,I + @j,l"j,i + j;i,lUj+I,i + hj,,"j,l+ I =&I* (56) 

The lower triangular matrix 9 has the nonzero elements h,,, dj,,, and ~j,, and the 

TABLE II 

Condition Number for Preconditioned Chebyshev Operator in Two Dimensions 

N 

4 
8 

16 
24 

Single-grid Multigrid 

H;;L H,$L H;;L H,;L 

1.85 1.72 
3.91 2.71 1.79 2.07 

11.62 4.07 2.12 2.92 
24.66 5.22 2.26 3.79 
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upper triangular matrix g has unit diagonal plus the nonzero elements$,, and ~j,,, 
where 

4, = 6j,19 

q,,= e;,r -M-1 - 4,ljf.-l,, - a(b.,S,,,-1 + d;.,,h;.-l,,h (57) 

j;,l = $,Jzj,l, 4.J = h;dFjJ- 

The H,, result uses a = 0 and H,, uses a = 1. Straightforward modifications are 
made near the boundaries. 

The eigenvalues of the iteration matrices H- ‘L corresponding to these three types 
of preconditioning have been computed numerically by the QR algorithm [9] for the 
constant coefficient, Poisson’s equation. The extreme ones are given in Table I. In all 
cases, the region between 1 and 2.4 is fairly uniformly populated with eigenvalues. In 
the H,, version there are a few (roughly 15 %) eigenvalues between 12,in and 1; 
likewise, about 20% of the eigenvalues of the H,, preconditioning fall between 2.4 
and A,,,,,. A few of the smaller eigenvalues have small imaginary parts. The 
remaining eigenvalues are real. In order to assess the effectiveness of these precon- 
ditionings in multigrid calculations, one also needs to know the smallest high- 
frequency eigenvalue. The numerical results indicate that this is 1.22 for H,, and 
H,, and 1.45 for HRS, essentially independent of N. The relevant condition numbers 
are given in Table II. Both H,, and H,, require only O(X) operations to invert. 
Thus, we reach the striking conclusion that although H,, is more effective for single- 
grid iterations, H,, is noticeably superior in multigrid applications. 

Beyond N = 24 computations of the complete eigenvalue spectra are impractical 
since the full two-dimensional matrix then takes over a million words of storage. The 
multigrid condition numbers and smoothing rates given in Table III are based on 
iterative calculations of the extreme eigenvalues of H;dL for N = 32 and N = 64 and 
the empirical formulae (based on least squares fits to the data for N( 64), 

Amax 2: 1.381N”8, Amin N 28.37N-7’4, 

for N > 64. 
The more important of these is the former and it is accurate to better than 1% for 

TABLE III 

Multigrid l-Parameter 3-Parameter8 
N Condition No. Smoothing Rate Smoothing Rate 

8 1.863 0.301 0.194 
16 2.134 0.362 0.236 
32 2.324 0.398 0.262 
64 2.525 0.433 0.287 

128 2.763 0.469 0.313 



500 ZANG, WONG, AND HUSSAINI 

N > 16. These results suggest that 0(X “‘I6 In&“) operations are required for 
convergence of the SMG method based on the H Lu preconditioning. This is only 
slightly worse than the best possible result of O(JY 1nJ). The l-parameter 
smoothing rates are based on a stationary Richardson iteration, whereas the 3- 
parameter smoothing rates are based on nonstationary Richardson iteration 
employing 3 distinct parameters. Comparing the present smoothing rates with those 
given in [I] for the H,, preconditioning it is apparent that the use of the H,, precon- 
ditioning reduces the number of SMG iterations for N > 32 by at least a factor of 2. 

V. COMPUTATIONAL EXPERIENCE 

The global character of pseudospectral approximations sharply distinguishes them 
from local approximations such as finite difference ones. Admittedly, this character 
makes spectral methods more complicated to implement, but it also is responsible for 
their superior approximation properties. One should expect that somewhat different 
considerations are important in SMG codes than in finite difference ones. Here we 
report on the performance we have obtained with several variants of SMG on two- 
dimensional problems and offer some general advice on their use. 

The operation count for a single relaxation sweep is fundamentally different for 
SMG-O(M In&J rather than O(X). Thus, the standard multigrid accounting 
device of assessing the cost of a coarse-grid relaxation as one-fourth of the work on a 
grid with half the mesh size is inappropriate. We prefer to make our comparisons in 
terms of actual machine time rather than Brandt’s work units [lo]. This choice has 
the virtue of including all auxiliary effort such as the various interpolations, but it 
also has the disadvantage of depending on the quality of the programmer and the 
computer. 

The specific measure to be used is the equivalent smoothing rate, denoted by ,D, 
and defined as follows. In some preliminary calculations, the average time r0 required 
for a single fine-grid relaxation is determined. For an actual multigrid calculation let 
r1 and r2 be the residuals after the first and last fine-grid relaxations, respectively, and 
let r be the total CPU time. Then 

pe= yz 
[ I 

I/((r/ro)- 1) 

r1 (59) 

In all the runs reported here, the finest level K = 5. The four types of schedules that 
were examined are described in Table IV. In schedules A and B, the problem was first 
solved on level 2; then that solution was interpolated to level 3 as the initial guess for 
a multigrid iteration involving levels 2 and 3; then the converged level 3 solution was 
interpolated to level 4 as its initial guess, etc. This strategy is commonly referred to 
as the full multigrid approach. The other two schedules simply began on level 5. Most 
schedules were run in the so-called accommodative mode, that is, the anticipated 
smoothing rates (e.g., Table III) were used in a dynamic determination of when to 
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TABLE IV 

Description of Multigrid Schedules 

Lower Level 
Schedule First Level Control Mode Problem 

- 
A 2 Accommodative Unfiltered 
B 2 Accommodative Filtered 
C 5 Accommodative N/A 
D 5 Fixed N/A 

shift between levels. Schedule D used the simple fixed schedule of performing just one 
sweep through the parameter sequence on a given level before interpolating to another 
one. This schedule is known as a V-cycle. All runs employed the correction scheme 
[IO] and used random numbers for the initial guess. The difference between 
schedules A and B lies in the right-hand side used to define the lower level problems. 
In the unfiltered version the pointwise values off(x) were used, but in schedule B, the 
lower level right-hand sides were obtained by applying the appropriate restriction 
operator to the finest level right-hand side. The lower level problem distinction is not 
applicable to schedules C and D. 

Periodic Problems 

The test problems have the form of Eq. (53) with the coefficients 

a(x, y) = b(x, JJ) = 1 + &ecos(4(X+y)), (60) 

and the exact solution 

24(x, y) = sin(a7r cos x + n/4) sin(a7r cos y + 7r/4) - uoO, (61) 

where 

(62) 

guarantees that the mean value of u(x, y) vanishes. The source term f(x, y) is 

TABLE V 

Parameters of the Periodic Test Problems 

Problem No. E a B 4% 

1 0.00 1 1 1.00 
2 0.10 1 1 0.75 
3 0.20 2 2 0.50 
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TABLE VI 

Influence of Coarse-Grid Operator on Fourier SMG 

Coarse-Grid 
Operator 

Equivalent Smoothing Rate 

Problem 1 Problem 2 Problem 3 

Unfiltered 0.76 0.78 0.81 
Filtered 0.76 0.78 0.81 

adjusted accordingly. The parameters of several test problems are listed in Table V. 
The last column relates the relaxation parameter actually employed to the optimal 
parameter for the E = 0 problem as given in Eq. (1.37). 

The influence of the coarse-grid operator is indicated in Table VI. The filtered 
coarse-grid operator is defined by Eqs. (35~(37). The unfiltered one replaces 
Eq. (37) with the pointwise values of a(xj). Schedule C was used for all runs. The 
filtered operator presents essentially no improvement. Although we find this result 
puzzling in light of the corresponding results for Dirichlet problem, we did not pursue 
it further because there are few applications for purely periodic boundary conditions. 

The dependence upon scheduling is given in Table VII. These runs used 
nonstationary Richardson iteration with three distinct relaxation parameters as 
described in [ 11. The filtered coarse-grid operators were also employed. The most 
striking result is the distinct superiority of schedule B on problem 1. The explanation 
for this behaviour lies in the very special relationship that exists for the constant- 
coefficient problem between the interpolation operators Rk and Pk and the operators 
Lk: The eigenfunctions of Lk-' are a subset (in fact precisely the low-frequency 
subset) of the eigenfunctions of L k. The prolongation operator Pk leaves the eigen- 
functions of Lk-' unchanged. Thus, this interpolation introduces no spurious high- 
frequency components. A similar relationship holds for the restriction operator. 

In order to get the full benefit of this property, however, the lower level problems 
(used for obtaining initial guesses on the higher level problems) must have alias-free 

TABLE VII 

Influence of Scheduling on Fourier SMG 

Equivalent Smoothing Rate 

Schedule Problem 1 Problem 2 Problem 3 

A 0.56 0.70 0.82 
B 0.50 0.70 0.82 
C 0.6 1 0.70 0.80 
D 0.70 0.76 0.83 
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TABLE VIII 

Parameters of the Dirichlet Test Problems 

Problem No. & a B W/W* 

1 0.00 1 1 1.00 
2 0.20 2 2 1.00 
3 1.00 5 10 0.90 

right-hand sides. Consider how the simple model problem described by Eq. (1) 
behaves in transform space for an elementary multigrid scheme which uses only 
levels 2 and 3. The (transformed) level 3 equations are 

P22ip=3p, p=--4,-3 3. ,..‘, (63) 

Suppose that a fully converged level 2 solution is used for the initial guess on level 3. 
If the level 2 problem is defined by the restricted values off(xJ (as in schedule B), 
then its equations are 

P2Cp=.ip, p=-2,-l,O, 1. (64) 

The resulting interpolated initial guess for the level 3 problem will have r.$ for 
p = -2, -1, 0, 1, precisely correct and r$ for p = -4, -3, 2, 3, will be 0. Thus, the 
only errors in the level 3 solution will be in the high-frequency modes and there will 
be no need to make any coarse-grid corrections, i.e., no true multigridding will occur. 
On the other hand, suppose that the level 2 problem is defined by the pointwise 
values off(x,) (as in schedule A). Then the level 2 equations will be 

P2$=& p=-2,-l,O, 1, (65) 

where 

(66) 

The last term in each of these equations is, of course, the alias of its preceding term. 
When this converged level 2 solution is interpolated to level 3 for use as the initial 
guess on the fine level, there will be errors in the low-frequency modes. Hence, 
coarse-grid corrections will have to be made. Consequently, schedule A consumes 
more computer time than schedule B. 

The superiority of schedule B does not extend to nontrivial cases, as represented 
here by problems 2 and 3. Since the eigenfunctions of the discrete operators are no 



504 ZANG, WONG, AND HUSSAINI 

longer simple trigonometric functions, they are not preserved by the interpolation 
operators. 

Schedule D is clearly marked as inferior to schedule C. Although schedule C 
operates in the accommodative mode, in nearly every case there are 6 relaxations on 
a level before restriction to a coarser level occurs. Schedule D uses only half as many 
relaxations before restriction occurs. (Recall that a nonstationary Richardson 
iteration with 3 parameters is employed, so that the number of relaxations is 
necessarily a multiple of 3.) Part of the increased efficiency of schedule C arises from 
the less frequent use of interpolations. 

A Fourier SMG program has some subtleties that deserve mention. They are 
connected with the zero eigenvalues of the discrete operator that arise from the p = 0 
and p = -N/2 diagonal entries of the Fourier differentiation operator (see Eq. (34)). 
The associated mean-value and highest frequency eigenfunctions are undamped by 
the iterative scheme. For the constant-coefficient case, a sufficient precaution is to 
filter these components out of the right-hand side and the initial guess. In variable- 
coefficient problems one must ensure that none of the highest frequency component 
enters the solution during a relaxation. 

Dirichlet Problems 

The test problems are specified by 

a(x, y) = b(x, y) = 1 + eecos(4n(x+Y)), (67) 

24(x, y) = sin(a7rx + n/4) sin(crxy + n/4). (68) 

The parameters of the test problems are given in Table VIII. Problem 1 not only has 
constant coefficients but it is also so well resolved by the Chebyshev pseudospectral 
method that its discretization error on level 5 is well below the round-off error of the 
CDC Cyber 175 (14 digits). Problem 3 is at the other extreme. The coefficients of the 
equation oscillate so rapidly that the level 5 grid cannot resolve them. Instead the 
converged solution of the level 5 collocation equations has an error of order 1. This 
case is included as a test of whether the Chebyshev SMG method is robust enough to 
converge on such a problem. 

The difference between the two choices of the coarse-grid operators is shown in 
Table IX. Both versions are identical on problem 1. The unfiltered coarse-grid 

TABLE IX 

Influence of Coarse-Grid Operator on Chebyshev SMG 

Coarse-Grid 
Operator 

Equivalent Smoothing Rate 

Problem 1 Problem 2 Problem 3 

Unfiltered 0.62 
Filtered 0.62 

0.66 Divergent 
0.62 0.76 
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TABLE X 

Influence of Scheduling on Chebyshev SMG 

Equivalent Smoothing Rate 

Schedule Problem 1 Problem 2 Problem 3 

A 0.26 0.58 0.11 
B 0.25 0.57 0.75 
C 0.51 0.59 0.70 
D 0.60 0.67 0.14 

operators produce a slow method on problem 2. The extra work occurs on the coarser 
levels where the smoothing is less effective. On problem 3 the unfiltered coarse-grid 
operators lead to a divergent method. We find it curious that the filtered coarse-grid 
operators failed to produce a simular improvement in Fourier SMG. Perhaps the 
difference lies in the use of preconditioning for Chebyshev SMG. (The filtered coef- 
ficients are, of course, used in the finite difference preconditioning as well.) Note that 
the variable coefficients of problem 3 are extremely oscillatory. Our unpreconditioned 
Fourier SMG method cannot handle anything remotely as difficult. 

The scheduling dependence is given in Table X. The filtered coarse-grid operator 
was used along with nonstationary Richardson iteration. The same trends are 
apparent here as for the periodic case, except that schedule B is now only slightly 
better than schedule A on problem 1. In the Chebyshev method the eigenfunctions of 
the discrete constant-coefficient operator are not preserved by the interpolation 
procedures. As before schedule D nearly always produces 6 relaxations prior to 
restriction. We again see that it is not a good strategy to relax the minimum number 
of times before restricting. 

At the end of the third section, we recommended the restriction operator defined by 
Eq. (51) for the residual transfer. Two alternatives have been tested. The “obvious” 
restriction operator of Eq. (43) fails miserably. It does not even work for the 
constant-coefficient problem. In the accommodative mode the algorithm rapidly 
settles into a “limit cycle” involving levels 2 and 3: it alternates between these two 
levels, always arriving on either level with the solution in the same state as at the 
start of its last visit. The second alternative is to “homogenize” the restrictions and 
prolongations by forcing the boundary values of the corrections to be zero both 
before and after the interpolation. Although this bizarre choice was made by accident, 
it actually works. However, since it has uniformly been slightly less effective than the 
adjoint choice, there is no good reason to resort to it. 
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TABLE XI 

Finite Difference vs Spectral MG for a = 1 

N 
FDMG 
Error 

SMG 
Error 

FDMG 
CPU Time 

SMG 
CPU Time 

8 2.37 (-2) 4.42 (-5) 0.08 0.35 
16 5.73 (-3) 8.53 (-13) 0.24 2.32 
32 1.42 (-3) 1.25 (-14) 0.76 5.62 
64 3.55 (-4) 2.59 

128 8.88 (-5) 9.71 

VI. COMPARISON WITH FINITE DIFFERENCE MULTIGRID 

The convergence properties of spectral methods are dramatically different from 
those of finite difference schemes. Once a spectral method has enough points to 
resolve all the features of the solution, that is, with errors of a few percent, then a 
doubling of the number of grid points in each coordinate direction will produce an 
answer which is many orders of magnitude better. This makes a comparison of 
spectral with finite difference methods rather subjective for it can be very sensitive to 
the desired accuracy. 

Nevertheless, the novelty of the SMG approach warrants some comparison with 
finite difference multigrid (FDMG). Brandt [lo] has provided a FDMG program. We 
used this to solve Eq. (53) on (-1, 1) X (-1, 1) with the coeffkients and solution 
given by Eqs. (67) and (68). An easy problem is given by E = 0 and a = 1 and a 
harder problem uses E = 0 and (r = 5. This FDMG program uses Gauss-Seidel relax- 
ation and has been tailored to Poisson’s equation. These same two problems were 
also solved with a version of our SMG program which was also tailored to Poisson’s 
equation. 

The RMS errors and the CPU times in seconds (on a CDC Cyber 175) for these 
two methods are shown in Tables XI and XII. The finite difference algorithm used 

TABLE XII 

Finite Difference vs Spectral MG for a = 5 

N 

8 
16 
32 
64 

128 

FDMG 
Error 

1.68 (0) 
1.92 (-1) 
4.11 (-2) 
9.87 (-3) 
2.44 (-3) 

SMG 
Error 

1.73 (1) 
2.56 (-2) 
5.25 (-10) 

FDMG 
CPU Time 

0.07 
0.19 
0.53 
2.26 
9.52 

SMG 
CPU Time 

0.33 
1.19 
7.84 
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the correction scheme in the full multigrid accommodative mode. The spectral 
algorithm used the same strategy, that is, schedule B with a 3-parameter Richardson’s 
iteration. The relaxations were continued until the RMS error was within a few 
percent of its final value. Some experimentation was conducted to determine this 
optimal stopping point. The results are self-explanatory. 

VII. PERSPECTIVE 

Together with [ 1 ] this paper represents a comprehensive description of the 
fundamentals of the spectral multigrid method for solving pseudospectral 
discretizations of self-adjoint elliptic equations. The key elements of the coarse-grid 
operators and the interpolation operators have been described in detail and their 
efficacy demonstrated in the numerical examples. No doubt the spectral multigrid 
method will prove as amenable to improvements in the relaxation scheme and precon- 
ditioning aspects as have finite difference and finite element multigrid methods. The 
next big step is the demonstration of the power of this method on a difficult nonlinear 
problem of engineering interest. This has already been achieved and is reported in 
illI* 
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